2012届高考理科数学第一轮总复习坐标系与参数方程教案

编辑: 逍遥路 关键词: 高三 来源: 高中学习网

第十七章 坐标系与参数方程

高考导航

考试要求重难点击命题展望
一、坐标系
1.了解在平面直角坐标系中刻画点的位置的方法,理解坐标系的作用.
2 .了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
3.能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
4.能在极坐标系中给出简单图形( 如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义.
5.了解在柱坐标系、球坐标系中刻画空间点的位置的方法,并与空间直角坐标系中刻画点的位置的方法相比较,体会它们的区别.
二、参数方程
1.了解参数方程,了解参数的意义.
2.分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程.
3.了解平摆线和渐开线的生成过程,并能写出它们的参数方程.
4.了解其他摆线的生成过程;了解摆线在实际中应用的实例;了解摆线在刻画行星运动轨道中的作用.  本章重点:
1.根据问题的几何特征选择坐标系;坐标法思想;平面直角坐标系中的伸缩变换;极坐标系;直线和圆的极坐标方程.
2.根据问题的条件引进适当的参数,写出参数方程,体会参数的意义;分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程.
本章难点:
1.对伸缩变换中点的对应关系的理解;极坐标的不唯一性;曲线的极坐标方程.
2.根据几何性质选取恰当的参数,建立曲线的参数方程.  坐标系是解析几何的基础,为便于用代数的方法研究几何图形,常需建立不同的坐标系,以便使建立的方程更加简单,参数方程是曲线在同一坐标系下不同于普通方程的又一种表现形式.某些曲线用参数方程表示比用普通方程表示更加方便.
本专题要求通过坐标系与参数方程知识的学习,使学生更全面地理解坐标法思想;能根据曲线的特点,选取适当的曲线方程表示形式,体会解决问题中数学方法的灵活性.
高考中,参数 方程和极坐标是本专题的重点考查内容.对于柱坐标系、球坐标系,只要求了解即可.



知识网络


17.1 坐标系


典例精析
题型一 极坐标的有关概念
【例1】已知△ABC的三个顶点的极坐标分别为A(5,π6),B(5,π2),C(-43,π3),试判断△ABC的形状,并求出它的面积.
【解析】在极坐标系中,设极点为O,由已知得∠AOB=π3,∠BOC=5π6,∠AOC=5π6.
又OA=OB=5,OC=43,由余弦定理得
AC2=OA2+OC2-2OA?OC?cos∠AOC=52+(43)2-2×5×43?cos5π6=133,
所以AC=133.同理,BC=133.
所以AC=BC,所以△ABC为等腰三角形.
又AB=OA=OB=5,
所以AB边上的高h=AC2-(12AB)2=1332,
所以S△ABC=12×1332×5=6534.
【点拨】判断△ABC的形状,就 需要计算三角形的边长或角,在本题中计算边长较为容易,所以先计算边长.
【变式训练1】(1)点A(5,π3)在条件:①ρ>0,θ∈(-2π,0)下极坐标为    ,②ρ<0,θ∈(2π,4π)下极坐标为     ;
(2)点P(-12,4π3)与曲线C:ρ=cos θ2的位置关系是 .
【解析】(1)(5,-5π3);(-5,10π3).(2)点P在曲线C上.
题型二 直角坐标与极坐标的互化
【例2】⊙O1和⊙O2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.
(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
(2)求经过⊙O1和⊙O2交点的直线的直角坐标方程.
【解析】(1)以极点为原点,极轴为x轴正半轴,建立直角坐标系,且两坐标系取相同单位长.
因为x=ρcos θ,y=ρsin θ,由ρ=4cos θ,得ρ2=4ρcos θ,
所以x2+y2=4x,即x2+y2-4x=0为⊙O1的直角坐标方程.
同理,x2+y2+4y=0为⊙O2的直角坐标方程.
(2) 由 解得 或
即⊙O1,⊙O2的交点为(0,0)和(2,-2)两点,
故过交点的直线的直角坐标方程为x+y=0.
【点拨】 互化的前提条件:原点对应着极点,x轴正向对应着极轴.将互化公式代入,整理可以得到.
【变式训练2】在极坐标系中,设圆ρ=3上的点到直线ρ(cos θ+3sin θ)=2的距离为d,求d的最大值.
【解析】将极坐标方程ρ=3化为普通方程x2+y2=9,
ρ(cos θ+3sin θ)=2可化为x+3y=2.
在x2+y2=9上任取一点A(3cos α,3sin α),
则点A到直线的距离为d=3cos α+33sin α-22=6sin(α+30°)-22,它 的最大值为4.
题型三 极坐标的应用
【例3】过原点的一动直线交圆x2+(y-1)2=1于点Q,在直线OQ上取一点P,使P到直线y=2的距离等于PQ,用极坐标法求动直线绕原点一周时点P的轨迹方程.
【解析】以O为极点,Ox为极轴,建立极坐标系,如右图所示,过P作PR垂直于直线y=2,则有PQ=PR.设P(ρ,θ),Q(ρ0,θ),则有ρ0=2sin θ.因为PR=PQ,所以2-ρsin θ=ρ-2sin θ,所以
ρ=±2或sin θ=±1,即为点P的轨迹的极坐标方程,化为直角坐标方程为x2+y2=4或x=0.
【点拨】用极坐标法可使几何中的一些问题得到很直接、简单的解法,但在解题时关键是极坐标要选取适当,这样可以简 化运算过程,转化为直角坐标时也容易一些.
【变式训练3】如图,点A在直线x=5上移动,等腰△OPA的顶角∠OPA为120°(O,P,A按顺时针方向排列),求点P的轨迹方程.
【解析】取O为极点,x正半轴为极轴,建立极坐标系,
则直线x=5的极坐标方程为ρcos θ=5.
设A(ρ0,θ0),P(ρ,θ),
因为点A在直线ρcos θ=5上,所以ρ0cos θ0=5.①
因为△OPA为等腰三角形,且∠OPA=120°,而OP=ρ,OA=ρ0以及∠POA=30°,
所以ρ0=3ρ,且θ0=θ-30°.②
把②代入①,得点P的轨迹的极坐标方程为3ρcos(θ-30°)=5.

题型四 平面直角坐标系中坐标的伸缩变换
【例4】定义变换T: 可把平面直角坐标系上的点P(x,y)变换成点P′(x′,y′).特别地,若曲线M上一点P经变换公式T变换后得到的点P′与点P重合,则称点P是曲线M在变换T下的不动点.
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为22,长轴顶点和短轴顶点间的距离为2.求椭圆C的标准方程,并求出当tan θ=34时,其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;
(2)当tan θ=34时,求(1)中的椭圆C 在变换T下的所有不动点的坐标.
【解析】(1)设椭圆C的标准方程为x2a2+y2b2=1(a>b>0),
由椭圆定义知焦距2c=22?c=2,即a2-b2=2.①
又由已知得a2+b2=4,②
故由①、②可解得a2=3,b2=1.
即椭圆C的标准方程为x23+y2=1,
且椭圆C两个焦点的坐标分别为F1(-2,0)和F2(2,0).
对于变换T: 当tanθ= 时,可得
设F1′(x1,y1) 和F2′(x2,y2)分别是由F1(-2,0)和F2(2,0)的坐标经变换公式T变换得到.
于是
即F1′的坐标为(-425,-325);

即F2′的坐标为(425,325).
(2)设P(x,y)是椭圆C在变换T下的不动点,则当tan θ=34时,
有 ?x=3y,由点P(x,y)∈C,即P(3y,y)∈C,得(3y)23+y2=1
? 因而椭圆C的不动点共有两个,分别为(32,12)和(-32 ,-12).
【变式训练4】在直角坐标系中,直线x-2y=2经过伸缩变换         后变成直线2x′-y′=4.
【解析】
总结提高
1.平面内一个点的极坐标有无数种表示方法.
如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;反之也成立.
2.熟练掌握几种常用的极坐标方程,特别是直线和圆的极坐标方程.

17.2 参数方程

典例精析
题型一 参数方程与普通方程互化
【例1】 把下列参数方程化成普通方程:
(1) (θ为参数);
(2) (t为参数,a,b>0).
【解析】(1)
所以5x2+4x y+17y2-81=0.
(2)由题意可得
所以①2-②2得4x2a2-4y2b2=4,所以x2a2-y2b2=1,其中x>0.
【变式训练1】把下列参数方程化为普 通方程,并指出曲线所表示的图形.
(1) (2) (3) (4)
【解析】(1)x2=2(y+12),-2≤x≤2,图形为一段抛物线弧.
(2)x=1,y≤-2或y≥2,图形为两条射线.
(3)x2+y2-3y=0(y≠3),图形是一个圆,但是除去点(0,3).
(4)(x-6)216-(y+3)225=1,图形是双曲线.
题型二 根据直线的参数方程求弦长
【例2】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρ2cos 2θ=1.
(1)求曲线C的普通方程;
(2)求直线l被曲线C截得的弦长.
【解析】(1)由曲线C:ρ2cos 2θ=ρ2(cos2θ-sin2θ)=1,
化成普通方程为x2-y2=1.①
(2)方法一:把直线参数方程化为标准参数方程 (t为参数).②
把②代入①得(2+t2)2-(32t)2=1,整理得t2-4t-6=0.
设其两根为t1,t2,则t1+t2=4,t1t2=-6.
从而弦长为t1-t2=(t1+t2)2-4t1t2=42-4(-6)=40=210.
方法二:把直线的参数方程化为普通方程为y=3(x-2),
代入x2-y2=1,得2x2-12x+13=0.
设l与C交于A(x1,y1),B(x2,y2),则x1+x2=6,x1x2=132,
所以AB=1+3?(x1+x2)2-4x1x2=262-26=210.
【变式训练2】在直角坐标系xOy中,直线l的参数方程为 (t为参数),若以O为极点 ,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=2cos(θ+π4),求直线l被曲线C所截的弦长.
【解析】将方程 (t为参数)化为普通方程为3x+4y+1=0.
将方程ρ=2cos(θ+π4)化为普通方程为x2+y2-x+y=0.
表示圆心为(12,-12),半径为r=22的圆,
则圆心到直线的距离d=110,弦长=2r2-d2=212-1100=75.
题型三 参数方程综合运用
【例3】(2009海南、宁夏)已知曲线C1: (t为参数),C2: (θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=π2,Q为C2上的动点,求PQ中点M到直线C3: (t为参数)距离的最小值.
【解析】(1)C1:(x+4)2+(y-3)2=1,C2:x264+y29=1.
C1是以(-4,3)为圆心,1为半径的圆;
C2是以坐标原点为中心,焦点在x轴,长半轴长是8,短半轴长是3的椭圆.
(2)当t=π2时,P(-4,4),Q(8cos θ,3sin θ),故M(-2+4cos θ,2+32sin θ).
C3为直线x-2y-7=0,M到C3的距离d=554cos θ-3sin θ-13,
从而cos θ=45,sin θ=-35时,d取最小值855.
【变式训练3】在平面直角坐标系xOy中,曲线C1的参数方程为 (θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=
2cos θ-4sin θ(ρ>0).
(1)化曲线C1 、C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.
【解析】(1)曲线C1:x216+y24=1;曲线C2:(x-1)2+(y+2)2=5.
曲线C1为中心是坐标原点,焦点在x轴上,长半轴长是4,短半轴长是2的椭圆;曲线C2为圆心为(1,-2),半径为5的圆.
(2)曲线C1:x216+y24=1与x轴的交点坐标为(-4,0)和(4,0), 因为m>0,所以点P的坐标为(4,0).显然切线l的斜率存在,设为k,则切线l的方程为y=k(x-4).
由曲线C2为圆心为(1,-2),半径为5的圆得k+2-4kk2+1=5,
解得k=3±102,所以切线l的方程为y=3±102(x-4).
总结提高
1.在参数方程与普通方程互化的过程中,要保持化简过程的同解变形,避免改变变量x,y的取值范围而造成错误.
2.消除参数的常用方法有:①代入消参法;②三角消参法;③根据参数方程的特征,采用特殊的消参手段.
3.参数的方法在求曲线的方程等方面有着广泛的应用,要注意合理选参、巧妙消参.


本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaosan/81176.html

相关阅读: