复数的几何意义

编辑: 逍遥路 关键词: 高二 来源: 高中学习网
3.1.2复数的几何意义
【目标】
1. 理解复数与复平面的点之间的一一对应关系
2.理解复数的几何意义并掌握复数模的计算方法
3、理解共轭复数的概念,了解共轭复数的简单性质
【重难点】
复数与从原点出发的向量的对应关系
【教学过程】
一、复习回顾
(1)复数集是实数集与虚数集的
(2)实数集与纯虚数集的交集是
(3)纯虚数集是虚数集的
(4)设复数集C为全集,那么实数集的补集是
(5)a,b.c.d∈R,a+bi=c+di
(6)a=0是z=a+bi(a,b∈R)为纯虚数的 条件
二、学生活动
1、阅读课本相关内容,并完成下面题目
(1)、复数z=a+bi(a、b∈R)与有序实数对(a,b)是 的
(2)、 叫做复平面, x轴叫做 ,y轴叫做
实轴上的点都表示 虚轴上的点除原点外,虚轴上的点都表示
(3)、复数集C和复平面内所有的点所成的集合是一一对应关系,即
复数 复平面内的点 平面向量
(4)、共轭复数
(5)、复数z=a+bi(a、b∈R)的模
2、学生分组讨论
(1)复数与从原点出发的向量的是如何对应的?
(2)复数的几何意义你是怎样理解的?
(3)复数的模与向量的模有什么联系?
(4)你能从几何的角度得出共轭复数的性质吗?
3、练习
(1)、在复平面内,分别用点和向量表示下列复数:
4,3+i,-1+4i,-3-2i,-i




(2)、已知复数 =3-4i, = ,试比较它们模的大小。


(3)、若复数Z=4a+3ai(a<0),则其模长为

(4)满足z=1(z∈R)的z值有几个?满足z=1(z∈C)的z值有几个?这些复数对应的点在复平面内构成怎样的图形?其轨迹方程是什么?
三、归纳总结、提升拓展
例1.(2007年辽宁卷)若 ,则复数 在复平面内所对应的点在( )
A.第一象限B.第二象限C.第三象限D.第四象限



1、复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个平行四边形的三个顶点,求这个平行四边形的第四个顶点对应的复数.




例3.设Z为纯虚数,且 ,求复数


四、反馈训练、巩固落实
1、判断正误
(1)实轴上的点都表示实数,虚轴上的点都表示纯虚数
(2) 若z1=z2,则z1=z2
(3) 若z1= z1,则z1>0
2、 ( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
3、已知a,判断z= 所对应的点在第几象限

本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaoer/55474.html

相关阅读:复数代数形式的加减运算及几何意义