高中数学解题思维能力,是如何炼成的

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网

高中数学解题思维能力,是如何炼成的?纵观近几年高考数学试题,可以看出高考数学试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强。如何才能提升思维能力,很多考生便依靠题海战术,寄希望多做题来应对多变的考题,然而凭借题海战术的功底仍然难以获得科学的思维方式,以至收效甚微。

最主要的原因就是“解题思路随意”造成的,并非所谓“不够用功”等原因。由于思维能力的原因,考生在解答高考题时形成一定的障碍。主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做着做着就走不下去了。如何解决这两大障碍呢?

第一,从求解(证)入手——寻找解题途径的基本方法

遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——必要性思维。

第二,数学式子变形——完成解题过程的关键

解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?

其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。

解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。

第三、回归课本---夯实基础。

1)揭示规律----掌握解题方法

高考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去“悟”出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。

2)构建网络----融会贯通

在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。

例如:

若f(x+a)=f(b-x)则f(x)关于对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2),x1+x2=a+b,=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,只要x1+x2=a+b,=常数f(x1)=f(x2),它可以写成许多形式如f(x)=f(a+b-x).同样关于点对称,则f(x1)+f(x2)=b,x1+x2=a(中点坐标横纵座标都为定值),关于(a/2,b/2)对称。

再如若f(x)=f(2a-x),f(x)=(2b-x),则f(x)的周期为T=2|a-b||如何理解记忆这个结论,我们类比三角函数f(x)=sinx从正弦函数图形中我们可知x=/2,x=3/2为两个对称轴,2|3/2-/2|=2,而得周期为,这样我们就很容易记住这一结论,即使在考场上,思维断路,只要把图一画,就可写出这一结论。这就是抽象到具体与数形结合的思想的体现。思想提炼总结在复习过程中起着关键作用。类似的结论f(x)关于点A(a,0)及B(b,0)对称则f(x)周期T=2|b-a|,若f(x)关于A(a,0)及x=b对称,则f(x)周期T=4|b-a|。


本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaozhong/1250834.html

相关阅读:数学学不好是智商低吗 学好数学的方法